Histological structure of intercellular fluid circulation pathways

Author:

Kondor Yu. Yu.ORCID,Tykholaz V. O.ORCID,Guminskyi Yu. Yо.ORCID

Abstract

Studies of the nervous system today are quite relevant and important. There are a large number of methods of studying and researching the brain, among which the histological method is widely used. Despite the variety of methods, in the possible practical application of histological examination of the central nervous system and brain in particular there are problems encountered by researchers: the complexity of the method, a large number of conventions to consider when working with nerve tissue, methods of fixation. Among other research methods, there is a group of histological methods, united by a common feature – in vivo staining of the nervous system, among which there is also a method of in vivo staining with methylene blue. The aim of the study was to establish the morphological features of the structure of the intercellular fluid circulation of the brain in experimental animals. The article describes a new method of injectable in vivo staining of the brains of laboratory animals with methylene blue. It is relevant for studying the morphology of the intercellular fluid circulation of the brain and the study of the structure of the microcirculatory tract. In our work it is offered to combine already known methods of perfusion fixation and a technique of supravital staining with methylene blue. Since most scientific studies of the brain use conventional research methods without a comprehensive study of the entire microcirculatory tract and intercellular fluid circulation, there is a need for more detailed study of the histological structure and topography of microcirculatory brain complexes to establish their normal structure. The results of the study confirm the researchers' observation that methylene blue has a high affinity for nerve fibers in the brain. In addition, it is obvious that the additional use of formalin as a solvent increases the resistance of methylene blue to leaching and the ability to stain the structures of the microcirculatory tract. In addition, the lifetime application of this technique allows you to visualize the morphological features of the microcirculation pathways of the intercellular fluid of the brain, Virchow-Robin space and capillary walls.

Publisher

Vinnytsia National Pyrogov Memorial Medical University

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,History,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3