Methods for Inclusive Underwriting of Breast Cancer Risk with Machine Learning and Innovative Algorithms

Author:

Plisson Manuel1,Moll Antoine1,Sarrazin Valentine1,Charles Denis12,Antoine Thibault1,Ionescu Razvan1,Koehren Odile1,Raymond Eric123

Affiliation:

1. 1 SCOR Global Life, Knowledge Team, 5 Avenue Kléber, 75795 Paris Cedex 16, France

2. 2 Université de Poitiers, CRIEF

3. 3 Department of Oncology, Groupe Hospitalier Paris Saint Joseph, 185 Rue Raymond Losserand, 75014 Paris, France.

Abstract

Introduction.—Due to early detection and improved therapies, the prevalence of long-term breast cancer survivors is increasing. This has increased the need for more inclusive underwriting in individuals with a history of breast cancer. Herein, we developed a method using algorithm aiming facilitating the underwriting of multiple parameters in breast cancer survivors. Methods.—Variables and data were extracted from the SEER database and analyzed using 4 different machine learning based algorithms (Logistic Regression, GA2M, Random Forest, and XGBoost) that were compared with Kaplan Meier survival estimates. The performances of these algorithms have been compared with multiple metrics (Log Loss, AUC, and SMR). In situ (non-invasive) and metastatic breast cancer were excluded from this analysis. Results.—Parameters included the pathological subtype, pTNM staging (T: tumor size, N; number of nodes; M presence or absence of metastases), Scarff-Bloom-Richardson grading, the expression of estrogen and progesterone hormone receptors were selected to predict the individual outcome at any time point from diagnosis. While all models had identical performance in terms of statistical metrics (AUC, Log Loss, and SMR), the logistic regression was the one and only model that respects all business constraints and was intelligible for medical and underwriting users. Conclusion.—This study provides insight to develop algorithms to set underwriter-friendly calculators for more accurate risk estimations that can be used to rationalize insurance pricing for breast cancer survivors. This study supports the development of a more inclusive underwriting based on models that can encompass the heterogeneity of several malignancies such as breast cancer.

Publisher

American Academy of Insurance Medicine

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3