Identifying voices using convolution neural network models AlexNet and ResNet

Author:

Luluh Abdulaziz Alhowaish,Anandhavalli Muniasamy

Abstract

Deep learning (DL) techniques which implement deep neural networks became popular due to the increase of high-performance computing facilities. DL achieves higher power and flexibility due to its ability to process many features when it deals with unstructured data. DL algorithm passes the data through several layers; each layer is capable of extracting features progressively and passes it to the next layer. Initial layers extract low-level features, and succeeding layers combine features to form a complete representation. This research attempts to utilize DL techniques for identifying sounds. The development in DL models has extensively covered classification and verification of objects through images. However, there have not been any notable findings concerning identification and verification of the voice of an individual from different other individuals using DL techniques. Hence, the proposed research aims to develop DL techniques capable of isolating the voice of an individual from a group of other sounds and classify them based on the use of convolutional neural networks models AlexNet and ResNet, that are used in voice identification. We achieved the classification accuracy of ResNet and AlexNet model for the problem of voice identification is 97.2039 % and 65.95% respectively, in which ResNet model achieves the best result.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3