Is it possible to detect cribriform adverse pathology in prostate cancer with magnetic resonance imaging machine learning-based radiomics?

Author:

Bıçakçıoğlu Hüseyin,Soyupek Sedat,Ertunç Onur,Evirmler Şehnaz,Serel Tekin Ahmet

Abstract

Rationale and objectives: Cribriform patterns are accepted as aggressive variants of prostate cancer. These adverse pathologies are closely associated with early biochemical recurrence, metastasis, castration resistance, and poor disease-related survival. A few publications exist to diagnose these two adverse pathologies with multiparametric magnetic resonance imaging (mpMRI). Most of these publications are retrospective and are not studies that have made a difference in diagnosing adverse pathology. It is also known that fusion biopsies taken from lesions detected in mpMRI are insufficient to detect these adverse pathologies. Our study aims to diagnose this adverse pathology using machine learning-based radiomics data from MR images. Materials and methods: A total of 88 patients who had pathology results indicating the presence of cribriform pattern and prostate adenocarcinoma underwent preoperative MRI examinations and radical prostatectomy. Manual slice-by-slice 3D volumetric segmentation was performed on all axial images. Data processing and machine learning analysis were conducted using Python 3.9.12 (Jupyter Notebook, Pycaret Library). Results: Two radiologists, SE and MAG, with 7 and 8 years of post-graduate experience, respectively, evaluated the images using the 3D-Slicer software without knowledge of the histopathological findings. One hundred seventeen radiomic tissue features were extracted from T1 weighted (T1W) and apparent diffusion coefficient (ADC) sequences for each patient. The interobserver agreement for these features was analyzed using the intraclass correlation coefficient (ICC). Features with excellent interobserver agreement (ICC > 0.90) were further analyzed for collinearity between predictors using Pearson’s correlation. Variables showing a very high correlation (r ≥ ±0.80) were disregarded. The selected features for T1W and ADC images were First-order maximum, First-order skewness, First-order 10th percentile for ADC, and Gray level size zone matrix, Large area low gray level emphasis for T1W.As a result of the classification of PyCaret, the three best models were found. A single model was obtained by blending these three models. AUC, accuracy, recall, precision, and F1 scores were 0.79, 0.77, 0.85, 0.82, and 0.83, respectively. Conclusion: ML-based MRI radiomics of prostate cancer can predict the cribriform pattern. This prognostic factor cannot be determined through qualitative radiological evaluation and may be overlooked in preoperative histopathological specimens.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3