Evaluation of machine learning classifiers for predicting essential genes in Mycobacterium tuberculosis strains

Author:

Mukul Das Monish,

Abstract

Accurate investigation and prediction of essential genes from bacterial genome is very important as it might be explored in effective targets for antimicrobial drugs and understanding biological mechanism of a cell. A subset of key features data obtained from 14 genome sequence-based features of 20 strains of Mycobacterium tuberculosis bacteria whose essential gene information was downloaded from ePath and NCBI database for mapping and matching essential genes by using a genome extraction program. The selection of key features was performed by using Genetic Algorithm. For each of three classifiers, 80%, 10% and 10% of subset key features were used for training, validation and testing, respectively. Experimental results (10-f-cv) illustrated that DNN (proposed), DT, and SVM achieved AUC of 0.98, 0.88 and 0.82, respectively. DNN (proposed) outperformed DT and SVM. The higher prediction accuracy of classifiers was observed because of using only key features which also justified better generalizability of classifiers and efficiency of key features related to gene essentiality. Besides, DNN (proposed) also showed best prediction performance while compared with other predictors used in previous studies. The genome extraction program was developed for mapping and matching of essential genes between ePath and NCBI database.

Publisher

Biomedical Informatics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3