Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, which is highly inflammatory. Compared to a healthy control group, SLE patients exhibit a higher concentration of advanced glycation end products (AGEs) and a lower concentration of receptors for AGEs (RAGE) in serum, however, the exact aetiology is still unclear. In the present study, non-enzymatic glycation induced modification of human serum albumin (HSA) has been studied by biophysical techniques. Glycated HSA (G-HSA) was used as an antigen, and serum autoantibody levels were estimated in SLE and normal humans (NH) against it, using direct binding ELISA and competitive inhibition ELISA. Compared to N-HSA, remarkable structural modifications were observed in G-HSA. Modified HSA also showed increased pentosidine fluorescence (213.7 ± 13.4 AU). Glycation of HSA induced a conversion of α-helix and random coil to β-sheet and β-turns. Serum immuno assays results exhibited significantly (p < 0.001) higher binding of G-HSA with serum autoantibodies from SLE patients when compared with native HSA (N-HSA). Furthermore, competitive ELISA results showed significantly (p < 0.001) high percent inhibition of serum IgG from SLE patients with modified antigen. Chronic inflammation with excessive oxidative stress in SLE patients could be a possible reason for structural alterations in blood proteins, generating highly immunogenic unique new-epitopes. These in turn induce the generation of specific autoantibodies against G-HSA that may serve as a potential biomarker for SLE pathogenesis.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献