Current trends on the application of artificial intelligence in medical sciences

Author:

Mashraqi Aisha Mousa,

Abstract

Artificial Intelligence (AI) is expanding with colossal applications in various sectors. In the healthcare sector, it is booming to make life simpler with utmost accuracy by predicting, diagnosing and up to care with the help of Machine Learning (ML) and Deep Learning (DL) applications. Modern computer algorithms have attained accuracy levels comparable to those of human specialists in medical sciences, although computers often do jobs more quickly than people do. It is also expected that there will not be a mandate for humans to be present for the jobs that machines can do, and it is gaining the highest peak because of good trained artificial models in the medical field. ML enhances the therapeutic process and improves health by encouraging more patient participation. ML may get more accurate patient data when used with the Internet of Medical Things (IoMT) and automate message notifications that prompt patients to respond at certain times. The motivation behind this article is to make a comprehensive review of the on-going implementation of ML in medical science, what challenges it is facing now, and how it can be simplified for future researchers to contribute better to medical sciences while applying it to the practitioners' jobs easier. In this review, we have extensively mined the data and brought up systematised applications of AI in healthcare, what challenges have been faced by the experts, and what ethical responsibilities are liable to them while taking the data. We also tabulated which algorithms will be helpful for what kind of data and disease conditions will be useful for future researchers and developers. This article will provide a better insight into AI and ML for the beginner to the advanced developer and researcher to understand the concepts from the basics.

Publisher

Biomedical Informatics

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3