Establishment and evaluation of a prognostic model for patients with unresectable gastric cancer liver metastases

Author:

Chang Zheng-Yao,Gao Wen-Xing,Zhang Yue,Zhao Wen,Wu Di,Chen Lin

Abstract

BACKGROUND Liver metastases (LM) is the primary factor contributing to unfavorable outcomes in patients diagnosed with gastric cancer (GC). The objective of this study is to analyze significant prognostic risk factors for patients with GCLM and develop a reliable nomogram model that can accurately predict individualized prognosis, thereby enhancing the ability to evaluate patient outcomes. AIM To analyze prognostic risk factors for GCLM and develop a reliable nomogram model to accurately predict individualized prognosis, thereby enhancing patient outcome assessment. METHODS Retrospective analysis was conducted on clinical data pertaining to GCLM (type III), admitted to the Department of General Surgery across multiple centers of the Chinese PLA General Hospital from January 2010 to January 2018. The dataset was divided into a development cohort and validation cohort in a ratio of 2:1. In the development cohort, we utilized univariate and multivariate Cox regression analyses to identify independent risk factors associated with overall survival in GCLM patients. Subsequently, we established a prediction model based on these findings and evaluated its performance using receiver operator characteristic curve analysis, calibration curves, and clinical decision curves. A nomogram was created to visually represent the prediction model, which was then externally validated using the validation cohort. RESULTS A total of 372 patients were included in this study, comprising 248 individuals in the development cohort and 124 individuals in the validation cohort. Based on Cox analysis results, our final prediction model incorporated five independent risk factors including albumin levels, primary tumor size, presence of extrahepatic metastases, surgical treatment status, and chemotherapy administration. The 1-, 3-, and 5-years Area Under the Curve values in the development cohort are 0.753, 0.859, and 0.909, respectively; whereas in the validation cohort, they are observed to be 0.772, 0.848, and 0.923. Furthermore, the calibration curves demonstrated excellent consistency between observed values and actual values. Finally, the decision curve analysis curve indicated substantial net clinical benefit. CONCLUSION Our study identified significant prognostic risk factors for GCLM and developed a reliable nomogram model, demonstrating promising predictive accuracy and potential clinical benefit in evaluating patient outcomes.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3