CROWD-SOURCED VISUAL DATA COLLECTION FOR MONITORING INDOOR CONSTRUCTION IN 3D

Author:

Amer Fouad,Golparvar-Fard Mani

Abstract

Complete and accurate 3D monitoring of indoor construction progress using visual data is challenging. It requires (a) capturing a large number of overlapping images, which is time-consuming and labor-intensive to collect, and (b) processing using Structure from Motion (SfM) algorithms, which can be computationally expensive. To address these inefficiencies, this paper proposes a hybrid SfM-SLAM 3D reconstruction algorithm along with a decentralized data collection workflow to map indoor construction work locations in 3D and any desired frequency. The hybrid 3D reconstruction method is composed of a pipeline of Structure from Motion (SfM) coupled with Multi-View Stereo (MVS) to generate 3D point clouds and a SLAM (Simultaneous Localization and Mapping) algorithm to register the separately formed models together. Our SfM and SLAM pipelines are built on binary Oriented FAST and Rotated BRIEF (ORB) descriptors to tightly couple these two separate reconstruction workflows and enable fast computation. To elaborate the data capture workflow and validate the proposed method, a case study was conducted on a real-world construction site. Compared to state-of-the-art methods, our preliminary results show a decrease in both registration error and processing time, demonstrating the potential of using daily images captured by different trades coupled with weekly walkthrough videos captured by a field engineer for complete 3D visual monitoring of indoor construction operations.

Publisher

ISEC Press

Subject

Organic Chemistry,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges of Automating Interior Construction Progress Monitoring;Journal of Construction Engineering and Management;2024-09

2. Minimal Solvers for Point Cloud Matching with Statistical Deformations;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3