Influence of europium doping on the crystallization, morphology, and the cathodoluminescent properties of PbNb2O6:Eu3+ phosphors

Author:

EKMEKCİ Mete Kaan1

Affiliation:

1. MARMARA ÜNİVERSİTESİ

Abstract

Undoped PbNb2O6 and Eu3+ ion doped PbNb2O6 samples were synthesized by high temperature mixed oxide method, applying a heat treatment temperature of 1250°C and an annealing time of 6 hours. In order to elucidate the structural and optical behavior of PbNb2O6:Eu3+ phosphors, XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), CL (cathodoluminescence) and absoption analyses were performed. The X-ray diffraction results showed that the undoped PbNb2O6 sample crystallized in a rhombohedral symmetry while Eu3+ doped samples formed in orthorhombic symmetry. The morphologies of the rhombohedral and orthorhombic grains were examined by SEM-EDS. The CL spectra showed spectral profiles between 580 and 780 nm in relation to the 4f–4f transitions of Eu3+. A strong emission was observed at about 620 nm, corresponding to the red color and associated with the 5D0 → 7F2 transition of Eu3+, while the undoped sample did not exhibit CL emission of the host which is probably due to the presence of lead in the host structure. In addition, the CL analysis results showed that the emission intensity increased with the increase of Eu3+ ion concentration. The increase in magnetic dipole transition caused by the electron beam radiation effect of the CL with increasing doping concentration is associated with the change of dipole moments of the Eu3+ doped tungsten bronze host and thus differentiating the emission spectrum. UV lamp excited photograph of undoped sample showed blue-violet color while Eu3+ doped phosphors with red color became more significant with increasing Eu3+ concentration.

Publisher

Journal of the Turkish Chemical Society, Section A: Chemistry

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3