Theoretical Investigation of the Structures and Energetics of (MX)-Ethanol Complexes in the Gas Phase

Author:

SADOON Ahmed M.1ORCID

Affiliation:

1. University of Mosul

Abstract

The structures and energy of alkali halide salt (MX) complexes with ethanol have been investigated in this work. The core of this study is to explore the effect of ion size on the interactions between solvent and solute. LiF and KBr as monovalent salts with different sizes of inion and cation have been chosen to explore this difference in addition to various physical properties. Three complexes of each LiF and KBr with ethanol taking the formula MX(CH3CH2OH)n (n=1-3), were studied. Ab-initio calculations have been performed to optimize the chemical structures of these complexes and explore the possible structures, isomers, and their corresponding IR spectra using Density functional theory (DFT/ B3LYP). 6-311G** were chosen as basis sets for these calculations. The geometry evaluations, energy searches, vibrational frequency calculations, and each complex's binding energy were also theoretically extracted in this study. The minimum energy structures were calculated, and different isomers were found. The presence of Ionic hydrogen bonds (IHBs) was observed and proposed to be the main binding between the MX salt and ethanol. Also, the infrared vibrational bands in the OH stretching region were recorded for the minimum structures, and the determined red-shift was at about 400 cm-1. In addition, the binding energy calculations found a gradual rise in the BE value with every additional ethanol molecule added to MX salt.

Publisher

Journal of the Turkish Chemical Society, Section A: Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Electronic and Molecular Features of Zn3S3/PEG4000 Nano-Composite Using the DFT Method;Journal of the Turkish Chemical Society Section A: Chemistry;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3