Large-scale Production of Few-Layer Reduced Graphene Oxide by the Rapid Thermal Reduction of Graphene Oxide and Its Structural Characterization

Author:

Eksik Osman1ORCID

Affiliation:

1. GEBZE TEKNİK ÜNİVERSİTESİ

Abstract

Graphene, a carbon allotrope, is a two-dimensional honeycomb of carbon atoms. Although graphene is a thin material, it is the strongest material known on Earth thanks to the strong carbon bonds in its structure. It is stated that the strength of these carbon bonds in graphene is about 100 times stronger than steel. In this study, graphite was first converted into graphene oxide (GO) by the Improved Hummers method, which is one of the methods suitable for large-scale production. Reduced graphene oxide (RGO) was obtained from the synthesized GOs by thermal reduction. TGA, FTIR, XRD, XPS, Raman, BET, and SEM analyses were used to characterize GO produced using the improved Hummers method and RGO reduced by thermal methods. TGA measurements show that RGO produced using the thermal approach had a lower mass loss than graphite oxidized using the improved Hummers process. This shows that the GO sample prepared using the improved Hummers approach contains a considerable number of distinct oxygen-containing groups. The novelty of the modified Hummers' method lies in its enhanced efficiency in producing graphene oxide through reduced thermal reaction times and improved scalability compared to the original approach in the literature. The C:O ratio of the GO and RGO samples was determined by XPS to be 1.88 and 11.17, respectively. The ID/IG ratio obtained by Raman analysis was 0.973. In addition, RGO's BET surface area was discovered to be 543.6 m2 g-1. These findings demonstrated that graphite was successfully oxidized by an improved Hummers method, and the resulting GO was thermally converted to few-layer RGO.

Funder

Gebze Technical University BAP Unit

Publisher

The Turkish Chemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3