Sustainable Synthesis of Green Cu2O Nanoparticles using Avocado Peel Extract as Biowaste Source

Author:

ÖZBAŞ Fatih1ORCID

Affiliation:

1. Fatih Sultan Mehmet Vakif University-Research Center for the Conservation of Cultural Property of Foundation

Abstract

In recent years, there has been a significant shift towards the production of advanced nanomaterials using sustainable methods, reflecting a heightened focus on reducing environmental impact and optimizing resource utilization. This growing interest stems from the necessity to address environmental concerns and embrace eco-friendly practices in material synthesis. The primary objective of this study is to explore the eco-friendly synthesis of novel metal oxide nanoparticles (NPs) by utilizing bio-waste as a sustainable precursor. The central theme revolves around employing ultrasound-assisted techniques for Cu2O NP synthesis, with a specific emphasis on utilizing avocado peel waste as an effective phytochemical compound for capping. Through systematic process optimization, we conducted a comprehensive assessment of the resulting NPs, delving into their chemical, thermal, and surface properties. Advanced characterization techniques, including X-ray Diffraction analysis (XRD), Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier-transform Infrared Spectroscopy (FT-IR), were employed to gain profound insights into the attributes of the synthesized NPs. Our experimental results conclusively demonstrate the successful synthesis of spherical Cu2O NPs, each with a diameter of 25 ± 2 nm. This was achieved by utilizing avocado peel waste (APW) and ultrasound-assisted cavitation at room temperature. The study significantly contributes to our understanding of the potential applications of green synthesis methods, paving the way for environmentally friendly and cost-effective Cu2O NPs.

Publisher

The Turkish Chemical Society

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3