Biosynthesis and Characterization of Co3O4NPs Utilizing Prickly Pear Fruit Extract and its Biological Activities

Author:

D. NAGAJOTHİ Ms.1,MAHESWARİ J1

Affiliation:

1. Ayya Nadar Janaki Ammal College

Abstract

In the current research, there is a low level of research and information about the interaction of cobalt oxide nanoparticles (Co3O4NPs) in biological systems. This research creates a very simple and cost-effective preparation of cobalt oxide nanoparticles by using prickly pear fruit extract as a reducing agent, which may be further used for biological applications like antimicrobial, antioxidant, DNA interaction and in-vitro anticancer activity. The use of prickly pear fruit extract acts as a good reducing agent and is responsible for easy preparation and reducing the toxicity of cobalt oxide nanoparticles. The fabricated biogenic nanoparticles were confirmed by microscopic and spectroscopic analytical techniques like Ultra Violet-Visible spectrometer, Fourier transforms infrared spectrometer (FTIR), X-ray Diffraction Method (XRD), Energy-dispersive X-ray spectroscopy (EDS), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The average size of the synthesized nanoparticles is 36.24 nm. In the MTT assay, the prepared cobalt oxide NPs haspotential mechanisms of cytotoxicity and in-vitro anticancer activity in Hepatocellular carcinoma cancer cells (HepG2). The microbial activities like antibacterial and antifungal studies of the biosynthesized nanoparticles were performed by the Disc method. The Co3O4NPs with DNA interaction were examined by UV-Visible and fluorescence spectroscopic methods. The binding constant value of biogenic Co3O4NPs with CT-DNA was observed by UV-Visible spectroscopy with a result of 2.57x105mol-1. The binding parameters and quenching constants were observed by fluorescence spectroscopic methods having values of Ksv=7.1x103, kq=7.1x108, Ka=3.47.1x105, n=0.9119. From the findings, Co3O4NPs may be utilized as a medicinal aid for their antibacterial, antifungal, antioxidant, DNA binding and in-vitro anticancer activities.

Publisher

Journal of the Turkish Chemical Society, Section A: Chemistry

Subject

General Chemistry

Reference76 articles.

1. 1. Gibbs RD. Comparative chemistry and phylogeny of flowering plants. In Royal Society of Canada; 1954.

2. 2. Esa YAM, Sapawe N. A short review on biosynthesis of cobalt metal nanoparticles. Materials Today: Proceedings. 2020;31:378–85.

3. 3. Harborne JB. Phytochemical methods: a guide to modern techniques of plant analysis. 3rd ed. London ; New York: Chapman and Hall; 1998. 302 p. ISBN :978-0-412-57260-9.

4. 4. Trease G, Evans W. Textbook of pharmacognosy. 14th edition. London; 1989.

5. 5. Vijayakumar S. Eco-friendly synthesis of gold nanoparticles using fruit extracts and in vitro anticancer studies. Journal of Saudi Chemical Society. 2019 Sep;23(6):753–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3