Pyknotic chromatin in mitonucleons elevating in syncytia undergo karyorhhexis and karyolysis before coalescing into an irregular chromatin mass: Differentiation of Ishikawa Domes, Part 2

Author:

Fleming Honoree1

Affiliation:

1. Dean of Education, retired, Castleton State College, Castleton, Vermont, United States

Abstract

Pyknosis, karyorrhexis and karyolysis, harbingers of programmed cell death in many systems, appear to be driving forces that transform Ishikawa monolayer epithelial cells into differentiated dome cells. The heterochromatin affected by these process is contained in multiple nuclei aggregated in the syncytia that form when Ishikawa monolayers are stimulated to differentiate (Fleming, 2016a). The nuclear aggregates are enveloped in a double membrane staining for the endogenous biotin in mitochondrial carboxylases. The structure called a mitonucleon becomes vacuolated, along with the heterochromatin it envelops, and this structure elevates with the apical membrane of the syncytium 6 to 8 hours into the 20 hour differentiation, becoming increasingly pyknotic. This phase of the differentiation comes to an end when the mitonucleon membranes are breached and nuclei emerging from the aggregated state can be seen to fragment explosively. Fragmented DNA associates with an array of microtubules, filling the large central clearing of the predome. Some chromatin remains unfragmented and can be seen of the edges of the predome clearing. Cell death does not occur. Instead, the fragmented DNA coalesces into an irregular mass within the apical and basal membranes of the predome under which fluid has been accumulating. From the chromatin sheet, nuclei emerge amitotically as described in Part 3 of this series (Fleming, 2016c).

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3