The GRIMMER test: A method for testing the validity of reported measures of variability

Author:

Anaya Jordan1ORCID

Affiliation:

1. omnesres.com, Charlottesville, United States

Abstract

GRIMMER (Granularity-Related Inconsistency of Means Mapped to Error Repeats) builds upon the GRIM test and allows for testing whether reported measures of variability are mathematically possible. GRIMMER relies upon the statistical phenomenon that variances display a simple repetitive pattern when the data is discrete, i.e. granular. This observation allows for the generation of an algorithm that can quickly identify whether a reported statistic of any size or precision is consistent with the stated sample size and granularity. My implementation of the test is available at PrePubMed (http://www.prepubmed.org/grimmer) and currently allows for testing variances, standard deviations, and standard errors for integer data. It is possible to extend the test to other measures of variability such as deviation from the mean, or apply the test to non-integer data such as data reported to halves or tenths. The ability of the test to identify inconsistent statistics relies upon four factors: (1) the sample size; (2) the granularity of the data; (3) the precision (number of decimals) of the reported statistic; and (4) the size of the standard deviation or standard error (but not the variance). The test is most powerful when the sample size is small, the granularity is large, the statistic is reported to a large number of decimal places, and the standard deviation or standard error is small (variance is immune to size considerations). This test has important implications for any field that routinely reports statistics for granular data to at least two decimal places because it can help identify errors in publications, and should be used by journals during their initial screen of new submissions. The errors detected can be the result of anything from something as innocent as a typo or rounding error to large statistical mistakes or unfortunately even fraud. In this report I describe the mathematical foundations of the GRIMMER test and the algorithm I use to implement it.

Publisher

PeerJ

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3