A Research data Sharing Game

Author:

Pronk Tessa E1,Wiersma Paulien H1,van Weerden Anne1

Affiliation:

1. Department of Information and Marketing, Utrecht University Library, Utrecht, The Netherlands

Abstract

While reusing research data has evident benefits for the scientific community as a whole, decisions to archive and share these data are primarily made by individual researchers. For individuals, it is less obvious that the benefits of sharing data outweigh the associated costs, i.e. time and money. In this sense the problem of data sharing resembles a typical game in interactive decision theory, more commonly known as game theory. Within this framework we analyse in this paper how different measures to promote sharing and reuse of research data affect sharing and not sharing individuals. We find that the scientific community can benefit from top-down policies to enhance sharing data even when the act of sharing itself implies a cost. Namely, if (almost) everyone shares, many individuals can gain a higher efficiency as datasets can be reused. Additionally, measures to ensure better data retrieval and quality can compensate for sharing costs by enabling reuse. Nevertheless, an individual researcher who decides not to share omits the costs of sharing. Assuming that the natural tendency will be to use a strategy that will lead to maximisation of individual efficiency it is seen that, as more individuals decide not to share, there is a point at which average efficiency for both sharing and non-sharing researchers becomes lower than was originally the case and scientific community efficiency steadily drops. With this in mind, we conclude that the key to motivate the researcher to share data lies in reducing the costs associated with sharing, or even better, turning it into a benefit.

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3