R Python, and Ruby clients for GBIF species occurrence data

Author:

Chamberlain Scott A1,Boettiger Carl2ORCID

Affiliation:

1. rOpenSci, Museum of Paleontology, University of California, Berkeley, Berkeley, CA, United States

2. rOpenSci, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States

Abstract

Background. The number of individuals of each species in a given location forms the basis for many sub-fields of ecology and evolution. Data on individuals, including which species, and where they're found can be used for a large number of research questions. Global Biodiversity Information Facility (hereafter, GBIF) is the largest of these. Programmatic clients for GBIF would make research dealing with GBIF data much easier and more reproducible. Methods. We have developed clients to access GBIF data for each of the R, Python, and Ruby programming languages: rgbif, pygbif, gbifrb. Results. For all clients we describe their design and utility, and demonstrate some use cases. Discussion. Programmatic access to GBIF will facilitate more open and reproducible science - the three GBIF clients described herein are a significant contribution towards this goal.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3