Affiliation:
1. RStudio, Boston, United States
2. Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
Abstract
Data analysis, statistical research, and teaching statistics have at least one thing in common: these activities all produce many files! There are data files, source code, figures, tables, prepared reports, and much more. Most of these files evolve over the course of a project and often need to be shared with others, for reading or edits, as a project unfolds. Without explicit and structured management, project organization can easily descend into chaos, taking time away from the primary work and reducing the quality of the final product. This unhappy result can be avoided by repurposing tools and workflows from the software development world, namely, distributed version control. This article describes the use of the version control system Git and and the hosting site GitHub for statistical and data scientific workflows. Special attention is given to projects that use the statistical language R and, optionally, R Markdown documents. Supplementary materials include an annotated set of links to step-by-step tutorials, real world examples, and other useful learning resources.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献