Terahertz band communications as a new frontier for drone networks

Author:

Akhtar Saeed ,Ozgur Gurbuz ,Mustafa Alper Akkas ,Ahmet Ozan Bicen

Abstract

Terahertz band (0.1-10 THz) communications is one of the candidates for 6G systems due to intrinsic massive bandwidth and data rate support. Having demonstrated the significant potential of THz band at various atmospheric altitudes, in this article, we discuss the prospects of THz communications for drone networks, more specifically, for Drone Sensor Networks (DSNs). For 6G non-terrestrial communication scenarios, drones will not only serve as on-demand base-stations, as supporting alternatives or backhauls for the terrestrial base stations, but they will also provide seamless connectivity for distributed monitoring and surveillance applications, which require an ultra-reliable low latency service for carrying multimedia data. THz band sensing will also provide additional sensing capabilities from the sky to THz-enabled DSNs. Presenting this vision, in this paper, we first discuss possible use cases of THz-enabled drone networks considering communication, sensing and localization aspects. Then, for revealing the capacity potential of THz-enabled drone networks, we provide motivating channel capacity results for communication of drones at different altitudes, under ideal channel conditions with no fading and realistic channel with beam misalignment and multipath fading. We further present major challenges pertaining to employing the THz band for DSNs, addressing physical layer issues, followed with spectrum and interference management, medium access control and higher layers and security, while reviewing some prominent solutions. Finally, we highlight future research directions with Artificial Intelligence (AI)/Machine Learning (ML)-based approaches and mobile edge computing.

Publisher

International Telecommunication Union

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operating a Battery-Limited Drone Swarm in 6G Network by Joint Power Transfer and Radar Imaging;IEEE Transactions on Aerospace and Electronic Systems;2024-08

2. Terahertz Drone Communications Under Fog and Beam Misalignment;2024 7th International Balkan Conference on Communications and Networking (BalkanCom);2024-06-03

3. Joint Resource Allocation for Terahertz Band Drone Communications;IEEE Transactions on Vehicular Technology;2024-06

4. Introduction;Analog Circuits and Signal Processing;2024

5. Outage Performance Analysis of Terahertz Band Drone-to-Ground Communications;2023 International Balkan Conference on Communications and Networking (BalkanCom);2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3