Beyond 5G URLLC evolution: New service modes and practical considerations

Author:

Hirley Alves ,Gweon Do Jo ,JaeSheung Shin ,Choongil Yeh ,Nurul Huda Mahmood ,Carlos H. M. de Lima ,Chanho Yoon ,Giyoon Park ,Nandana Rahatheva ,Ok-Sun Park ,Seokki Kim ,Eunah Kim ,Ville Niemel� ,Hyeon Woo Lee ,Ari Pouttu ,Hyun Kyu Chung ,Matti Latva-aho

Abstract

Ultra-Reliable Low Latency Communications (URLLC) arose to serve Industrial IoT (IIoT) use cases within 5G. However, currently, it has inherent limitations in supporting future services. Therefore, in this article, based on state-of-the-art research and practical deployment experience, from two distinct test networks from Finland and South Korea, we introduce and advocate for three variants of critical Machine-Type Communications (MTC), namely, broadband, scalable and extreme URLLC. Moreover, we discuss use cases and key performance indicators and identify two critical technology enablers for each new service class. Finally, we bring practical considerations from the IIoT testbed and provide an outlook towards new research directions.

Publisher

International Telecommunication Union

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive survey on resource allocation for edge-computing-enabled metaverse;Computer Science Review;2024-11

2. Distributed Radiance Fields for Edge Video Compression and Metaverse Integration in Autonomous Driving;2024 IEEE International Conference on Smart Computing (SMARTCOMP);2024-06-29

3. PhD Forum: Distributed Radiance Fields for Edge Video Compression and Metaverse Integration in Autonomous Driving;2024 IEEE International Conference on Smart Computing (SMARTCOMP);2024-06-29

4. Device For Securing IoT In The Wireless Environment;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27

5. ALPACA: An Asymmetric Loss Prediction Algorithm for Channel Adaptation Based on a Convolutional-Recurrent Neural Network in URLLC Systems;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3