A trust-aware cluster-based communication architecture for vehicular named data networking

Author:

Chaker Abdelaziz Kerrache

Abstract

Information-centric Networking (ICN) is a new networking paradigm that aims to solve the problem of the traditional TCP/IP-based Internet. Content-centric Networking (CCN) and Named Data Networking (NDN), both based on the Interest/Data communication paradigm, are two of the most well-known and specialized implementations of ICN. In contrast to typical networks, NDN enables intrinsic security, which ensures data security rather than communication channel security. Each response/data packet in transit has a signature on the contents of the data to ensure security. As a result, an invalid signature indicates an unauthenticated data packet. This ongoing hierarchical authentication verification approach causes a significant delay while providing the appropriate security levels. As a result, in a highly mobile environment with delay-sensitive applications like Vehicular Ad hoc Networks (VANETs), such a technique is neither viable nor scalable. We present a unique Trust-Aware Cluster-based Communication Architecture (TACCA) for Vehicular Named Data Networking in this study, which aims to improve the security of NDN-driven VANETs (VNDN). It separates the route segments into clusters and chooses cluster heads based on their trustworthiness and proximity to the center location. The selected cluster heads are then in charge of disseminating interest packets to prevent the broadcast storm problem. Once the data producer has been located, the data is returned to the requester in the quickest and most secure manner possible. Simultaneously, the intermediate vehicles decided whether or not to verify the data's validity based on their subjective perceptions of the data's producer's conduct. As a result, the calculation complexity and time are reduced. Our idea is able to maintain vanilla NDN security standards while lowering the produced end-to-end latency by more than three times, according to simulation data. As a result, the proposed TACCA is more suited to mobile networks(...)

Publisher

International Telecommunication Union

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Framework, Review for Virtual Reality to Unlock Their Marketing Potential;Lecture Notes in Networks and Systems;2024

2. An Overview of 5G and 6G Networks from the Perspective of AI Applications;Journal of The Institution of Engineers (India): Series B;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3