Decision tree-based radio link failure prediction for 5G communication reliability

Author:

Nethraa Sivakumar ,Pooja Srinivasan ,Nikhil Viswanath ,Venkateswaran N

Abstract

Stable and high-quality Internet connectivity is mandatory for 5G mobile networks. Network disruption may occur due to unexpected variations in environmental conditions such as weather, wind, and natural or man-made surroundings, and the influence of the defect is quite severe. Prediction of such undesirable events at a low cost can boost 5G communication reliability, massive network capacity, and decreased latency. This research work makes use of novel preprocessing and feature engineering techniques, followed by a trained decision tree model to predict the occurrence of Radio Link Failure (RLF). This system is designed to predict RLF for not just the next day, but also any of the next 5 days. This prediction supports reliance and increasing demand for good Internet connectivity. In order to achieve accurate RLF prediction, comprehensive data has been used which undergoes preprocessing. To account for the influence of surrounding weather conditions on radio links, the proposed system makes use of information from the past i.e., previous RLFs, and the information from the future i.e., the weather forecast from the weather station around the radio link station. The decision tree model was trained with the integration of feature engineering. A macro-averaged F1-score of 70% and 77% were obtained for RLF prediction for the next day and RLF prediction for the next 5 days, respectively. The results show improvement in performance after the incorporation of feature engineering in the pipeline. Further, an additional metric termed G-Mean is introduced in the paper. Owing to the high imbalance in the dataset, this metric was found to provide a more realistic representation of the results. The G-Mean score was found to be 98.69% and 92.89% for RLF prediction for the next day and RLF prediction for the next 5 days, respectively.

Publisher

International Telecommunication Union

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 5G Radio Link Failure Prediction using Quantum Machine Learning;2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS);2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3