Author:
De Andrade Leonardo,Paraboni Ivandré
Abstract
Com o crescimento constante no uso de tecnologias de relacionamento com o consumidor na Internet, os sistemas de chatbot se tornaram onipresentes no processamento de linguagem natural (PLN) e áreas relacionadas. Apesar dos avanços significativos nos últimos anos, no entanto, sistemas desse tipo nem sempre fornecem resultados plausíveis e consistentes, em muitos casos levando a uma quebra no diálogo. Assim, há grande interesse em investigar as circunstâncias nas quais erros deste tipo são produzidos e, quando possível, aprimorar o projeto destes sistemas de modo a minimizar tais erros. Com base nestas observações, neste trabalho abordamos a questão da detecção automática de quebras em diálogos humano-computador apresentando três modelos que levam em consideração o histórico de diálogo para decidir quando ele possui maior probabilidade de culminar em uma quebra. Os modelos propostos exploram uma variedade de métodos de PLN recentes, e são avaliados tanto com base em um conjunto de dados de diálogos reais em português entre usuários humanos e sistemas de chatbot desenvolvido especificamente para este fim, como também utilizando benchmarks publicamente disponíveis para o idioma inglês.
Subject
Linguistics and Language,Language and Linguistics