Spectrum and functional properties of <i>ERG11</i> gene mutations in fluconazole-resistant <i>Candida albicans</i> strains isolated from HIV-infected patients

Author:

Nesvizhsky Yuri V.ORCID,Afanasiev Stanislav S.ORCID,Voropaev Alexander D.ORCID,Urban Yulia N.ORCID,Suleimanova Mariam E.ORCID,Afanasiev Maxim S.ORCID,Budanova Elena V.ORCID,Voropaeva Elena A.ORCID

Abstract

Rationale. The low efficacy of azole antimycotics in treatment of Candida infections, especially in HIV-infected patients, is often associated with overexpression of the ERG11 gene in Candida spp., which results in increased production of ergosterol the target of the above antimycotic drugs. Researchers have found ERG11 gene mutations that can modify its overexpression effects by increasing or decreasing it. However, the findings reported by different laboratories and countries are highly contradictory. The purpose of the study is to explore the spectrum and functional properties of ERG11 gene mutations in fluconazole-resistant Candida albicans strains isolated from HIV-infected patients. Materials and methods. The study was performed using 10 C. albicans strains inherently resistant to fluconazole and voriconazole and isolated from the oropharynx of HIV-infected patients; the strains were provided from the collection of the Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology. The strains were assessed by their sensitivity to antimycotic agents: anidulafungin, micafungin, caspofungin, posaconazole, voriconazole, itraconazole, fluconazole, amphotericin B, 5-flucytosine. Expression levels of the ERG11 gene were measured by quantitative PCR. ERG11 gene mutations were identified by Sanger sequencing. Results. Five mutations (E266D, G464S, I471L, D116E, and V488I) were detected in the ERG11 gene in seven C. albicans strains; six strains carried non-associated co-occurring mutations. Increased expression of the ERG11 gene was found in six C. albicans strains. The V488I mutation demonstrated a strong negative association with the increased expression of the ERG11 gene (r = 0.845; p 0.05). The minimum inhibitory concentration (MIC) in strains carrying mutations was a hundred times as low (p 0.05) as MIC in strains without mutations. In mutation carriers, posaconazole and itraconazole MICs were on average 16.5 times as low as MICs of voriconazole and fluconazole (p 0.001). The presence of mutations in the ERG11 gene had almost no effect on MICs of the tested antimycotics of the echinocandin, polyene, and pyrimidine groups. Conclusion. Multiple mutations were detected in the ERG11 gene in most of the C. albicans strains isolated from HIV-infected patients and resistant to fluconazole and voriconazole. Except for the V488I mutation, the detected mutations were not associated with the overexpression of the ERG11 gene and decreased the effects of overexpression of the ERG11 gene by up to 100 times, though they did not eliminate the inherent resistance to triazole antimycotics.

Publisher

Central Research Institute for Epidemiology

Subject

General Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3