Influence of immunomodulation on intracellular cytokine expression by spleen T-helpers of mice immunized by Yersinia pestis EV NIIEG

Author:

Klyueva S. N.1ORCID,Goncharova A. Yu.1ORCID,Kravtsov A. L.1ORCID,Bugorkova S. A.1ORCID

Affiliation:

1. Russian Research Anti-Plague Institute «Microbe»

Abstract

Aim. To characterize the intracellular expression of cytokines by spleen T-helpers and the spontaneous production of cytokines in the blood of BALB/c mice immunized with Yersinia pestis EV NIIEG against the background of immunomodulation.Materials and methods. Intracellular expression of CD4+IFN-γ+, CD4+IL-4+, CD4+IL-17+ was determined in mice spleen cell suspensions by flow cytometry, IFN-γ and IL-10 were measured in ELISA in blood supernatants on day 3 and day 21 after the immunization with Y. pestis EV against the background of immunomodulation. On day 21 after the immunization animals were infected by Y. pestis 231 at a dose of 400 LD50.Results. Differences in cytokine response to studied drugs, correlated with CD4+IFN-γ+ levels in animals, were identified. On day 3, a significant decrease in CD4+IFN-γ+ was observed in response to Y. pestis EV and to recombinant gamma interferon (Ingaron). A significant increase in CD4+IFN-γ+ was detected in response to vaccine strain administered with azoximer bromide (Polyoxidonium). Intracellular expression of IFN-γ, IL-4 and IL-17 increased on day 21by an average of 2,3 times when immunomodulators were used in the immunization schedule. In addition, on day 21 a significant (p ˂ 0.05) increase in the proportion of T-helpers expressing IFN-γ, as well as in level of spontaneous IFN-γ production in blood supernatants was observed only in animals immunized by schedules that included immunomodulators. After the challenge with Y. pestis 231 of animals previously immunized by schedules that included Polyoxidonium, the correlation analysis confirmed the association (r = 0,94; p = 0,0004) of mice survival with intensity of CD4+IFN-γ+ expression.Conclusion. The data obtained confirm the effectiveness of Polyoxidonium application in experimental animal Y. pestis EV immunization schedule and the usefulness of intracellular cytokine expression measurement for assessment of the level of protection following the immunization.

Publisher

Central Research Institute for Epidemiology

Subject

General Medicine

Reference15 articles.

1. Verma S.K., Tuteja U. Plague vaccine development: current research and future trends. Front. Immunol. 2016; 7: 602. https://doi.org/10.3389/fimmu.2016.00602

2. Omel'chenko N.D., Ivanova I.A., Bespalova I.A., Filippenko A.V. Immunomodulators and specific prophylaxis of infectious diseases. Problemy osobo opasnykh infektsiy. 2017; (3): 21–6. https://doi.org/10.21055/0370-1069-2017-3-21-2 (in Russian)

3. Bugorkova S.A., Kurylina A.F., Shchukovskaya T.N. Morphological-functional characteristics of immune competent organs of balb/c mice in case of vaccination with Yersinia pestis NIIEG strain against the background of immune modulation. Problemy osobo opasnykh infektsiy. 2017; (2): 58–62. https://doi.org/10.21055/0370-1069-2017-2-58-62 (in Russian)

4. Kravtsov A.L., Kurylina A.F., Klyueva S.N., Shchukovskaya T.N. The modulating effect of polyoxidonium on the reactivity of immune cells in the formation of anti-plague immunity. Immunologiya. 2016; 37(6): 320–5. https://doi.org/10.18821/0206-4952-2016-37-6-320-325 (in Russian)

5. Ponomareva T.S., Deryabin P.N., Karal'nik B.V., Tugambaev T.I., Atshabar B.B., Denisova T.G., et al. The impact of polyoxidonium on immunogenic and protective activity alive plague vaccine. Immunologiya. 2014; 35(5): 286–90. (in Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3