Affiliation:
1. Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
Abstract
The spinothalamic tract (STT) is the primary pathway carrying nociceptive information from the spinal cord to the brain in humans. The aim of this study was to understand better the organization of STT axons within the spinal cord white matter of monkeys. The location of STT axons was determined using method of antidromic activation. Twenty-six lumbar STT cells were isolated. Nineteen were classified as wide dynamic range neurons and seven as high-threshold cells. Fifteen STT neurons were recorded in the deep dorsal horn (DDH) and 11 in superficial dorsal horn (SDH). The axons of 26 STT neurons were located at 73 low-threshold points (<30 μA) within the lateral funiculus from T9 to C6. STT neurons in the SDH were activated from 33 low-threshold points, neurons in the DDH from 40 low-threshold points. In lower thoracic segments, SDH neurons were antidromically activated from low-threshold points at the dorsal-ventral level of the denticulate ligament. Neurons in the DDH were activated from points located slightly ventral, within the ventral lateral funiculus. At higher segmental levels, axons from SDH neurons continued in a position dorsal to those of neurons in the DDH. However, axons from neurons in both areas of the gray matter were activated from points located in more ventral positions within the lateral funiculus. Unlike the suggestions in several previous reports, the present findings indicate that STT axons originating in the lumbar cord shift into increasingly ventral positions as they ascend the length of the spinal cord.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献