Cannabinoid and Kappa Opioid Receptors Reduce Potassium K Current via Activation of Gs Proteins in Cultured Hippocampal Neurons

Author:

Hampson Robert E.1,Mu Jian1,Deadwyler Sam A.1

Affiliation:

1. Department of Physiology and Pharmacology, Wake Forest University, Winston Salem, North Carolina 27157

Abstract

The current study showed that potassium K current ( I K), which is evoked at depolarizing potentials between −30 and +40 mV in cultured hippocampal neurons, was significantly reduced by exposure to the CB1 cannabinoid receptor agonist WIN 55,212-2 (WIN-2). WIN-2 (20–40 nM) produced an average 45% decrease in I K amplitude across all voltage steps, which was prevented by SR141716A, the CB1 receptor antagonist. The cannabinoid receptor has previously been shown to be Gi/o protein-linked to several cellular processes; however, the decrease in I Kwas unaffected by modulators of Gi/o proteins and agents that alter levels of protein kinase A. In contrast, CB1 receptor-mediated or direct activation of Gsproteins with cholera toxin (CTX) produced the same decrease in I K amplitude as WIN-2, and the latter was blocked in CTX-treated cells. Gs protein inhibition via GDPβS also eliminated the effects of WIN-2 on I K. Consistent with this outcome, activation of protein kinase C (PKC) by arachidonic acid produced similar effects to WIN-2 and CTX. Kappa opioid receptor agonists, which also reduce I K amplitude via Gs proteins, were compared with WIN-2 actions on I K. The kappa receptor agonist U50,488 reduced I K amplitude in the same manner as WIN-2, while the kappa receptor antagonist, nor-binaltorphimine, actually increased I K amplitude and significantly reduced the effect of co-administered WIN-2. The results indicate that CB1 and kappa receptor activation is additive with respect to I K amplitude, suggesting that CB1 and kappa receptors share a common Gs protein signaling pathway involving PKC.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3