Affiliation:
1. Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan; and Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, Washington 98195
Abstract
Smooth pursuit and vestibularly induced eye movements interact to maintain the accuracy of eye movements in space (i.e., gaze). To understand the role played by the frontal eye fields in pursuit-vestibular interactions, we examined activity of 110 neurons in the periarcuate areas of head-stabilized Japanese monkeys during pursuit eye movements and passive whole-body rotation. The majority (92%) responded with the peak of their modulation near peak stimulus velocity during suppression of the vestibuloocular reflex (VOR) when the monkeys tracked a target that moved with the same amplitude and phase and in the same plane as the chair. We classified pursuit-related neurons ( n = 100) as gaze- velocity if their peak modulation occurred for eye (pursuit) and head (VOR suppression) movements in the same direction; the amplitude of modulation during one less than twice that of the other; and modulation was lower during target-stationary-in-space condition (VOR ×1) than during VOR suppression. In addition, we examined responses during VOR enhancement (×2) in which the target moved with equal amplitude as, but opposite direction to, the chair. Gaze-velocity neurons responded maximally for opposite directions during VOR ×2 and suppression. Based on these criteria, the majority of pursuit-related neurons (66%) were classified as gaze-velocity with preferred directions uniformly distributed. Because the majority of the remaining cells (32/34) also responded during VOR suppression, they were classified as eye/head-velocity neurons. Thirteen preferred pursuit and VOR suppression in the same direction; 13 in the opposite direction, and 6 showed biphasic modulation during VOR suppression. Eye- and gaze-velocity sensitivity of the two groups of cells were similar; mean (± SD) was 0.53 ± 0.30 and 0.50 ± 0.44 spikes/s per °/s, respectively. Gaze-velocity (but not eye/head-velocity) neurons showed significant correlation between eye- and gaze-velocity sensitivity, and both groups maintained their responses when the tracking target was extinguished briefly. The majority of pursuit-related neurons (28/43 = about 65%) responded to chair rotation in complete darkness. When the monkeys fixated a stationary target, more than half of cells tested (21/40) discharged in proportion to the velocity of retinal motion of a second laser spot (mean velocity sensitivity = 0.20 ± 0.16 spikes/s per °/s). Preferred directions of individual cells to the second spot were similar to those during pursuit. Visual responses to the second spot movement were maintained even when it was extinguished briefly. These results indicate that both retinal image- and gaze-velocity signals are carried by single periarcuate pursuit-related neurons, suggesting that these signals can provide target-velocity-in-space and gaze-velocity commands during pursuit-vestibular interactions.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献