Responses to Efferent Activation and Excitatory Response-Intensity Relations of Turtle Posterior-Crista Afferents

Author:

Brichta Alan M.1,Goldberg Jay M.2

Affiliation:

1. Departments of Surgery (Otolaryngology-Head and Neck Surgery) and

2. Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637

Abstract

Multivariate statistical formulas were used to infer the morphological type and longitudinal position of extracellularly recorded afferents. Efferent fibers were stimulated electrically in the nerve branch interconnecting the anterior and posterior VIIIth nerves. Responses of bouton (B) units depended on their inferred position: BP units (near the planum semilunatum) showed small excitatory responses; BT units (near the torus) were inhibited; BM units (in an intermediate position) had a mixed response, including an initial inhibition and a delayed excitation. Calyx-bearing (CD-high) units with an appreciable background discharge showed large per-train excitatory responses followed by smaller post-train responses that could outlast the shock train by 100 s. Excitatory responses were smaller in calyx-bearing (CD-low) units having little or no background activity than in CD-high units. Excitatory response-intensity functions, derived from the discharge during 2-s angular-velocity ramps varying in intensity, were fit by empirical functions that gave estimates of the maximal response ( r MAX), a threshold velocity ( v T), and the velocity producing a half-maximal response ( v 1/2). Linear gain is equal to r MAX/ v S, v S = v 1/2 − v T. v S provides a measure of the velocity range over which the response is nearly linear. For B units, r MAX declines by as much as twofold over the 2-s ramp, whereas for CD units, r MAXincreases by 15% during the same time period. At the end of the ramp, r MAX is on average twice as high in CD as in B units. Thresholds are negligible in most spontaneously active units, including almost all B and CD-high units. Silent CD-low units typically have thresholds of 10–100 deg/s. BT units have very high linear gains and v S < 10 deg/s. Linear gains are considerably lower in BP units and v S> 150 deg/s. CD-high units have intermediate gains and near 100 deg/s v S values. CD-low units have low gains and v S values ranging from 150 to more than 300 deg/s. The results suggest that BT units are designed to measure the small head movements involved in postural control, whereas BP and CD units are more appropriate for monitoring large volitional head movements. The former units are silenced by efferent activation, whereas the latter units are excited. This suggests that the efferent system switches the turtle posterior crista from a “postural” to a “volitional” mode.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3