Effect of Hyperbaric Oxygen Treatment on Nitric Oxide and Oxygen Free Radicals in Rat Brain

Author:

Elayan Ikram M.1,Axley Milton J.1,Prasad Paruchuri V.1,Ahlers Stephen T.1,Auker Charles R.1

Affiliation:

1. Naval Medical Research Center, National Naval Medical Center, Bethesda, Maryland 20889-5607

Abstract

Oxygen (O2) at high pressures acts as a neurotoxic agent leading to convulsions. The mechanism of this neurotoxicity is not known; however, oxygen free radicals and nitric oxide (NO) have been suggested as contributors. This study was designed to follow the formation of oxygen free radicals and NO in the rat brain under hyperbaric oxygen (HBO) conditions using in vivo microdialysis. Male Sprague-Dawley rats were exposed to 100% O2 at a pressure of 3 atm absolute for 2 h. The formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) as a result of perfusing sodium salicylate was followed as an indicator for the formation of hydroxyl radicals. 2,3-DHBA levels in hippocampal and striatal dialysates of animals exposed to HBO conditions were not significantly different from controls. However, rats treated under the same conditions showed a six- and fourfold increase in nitrite/nitrate, break down products of NO decomposition, in hippocampal and striatal dialysates, respectively. This increase was completely blocked by the nitric oxide synthase (NOS) inhibitor l-nitroarginine methyl ester (l-NAME). Using neuronal NOS, we determined the NOS O2 K m to be 158 ± 28 (SD) mmHg, a value which suggests that production of NO by NOS would increase approximately four- to fivefold under hyperbaric O2 conditions, closely matching the measured increase in vivo. The increase in NO levels may be partially responsible for some of the detrimental effects of HBO conditions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3