Predictive Modulation of Muscle Coordination Pattern Magnitude Scales Fingertip Force Magnitude Over the Voluntary Range

Author:

Valero-Cuevas Francisco J.1

Affiliation:

1. Rehabilitation Research and Development Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304-1200; and Neuromuscular Biomechanics Laboratory, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853

Abstract

Human fingers have sufficiently more muscles than joints such that every fingertip force of submaximal magnitude can be produced by an infinite number of muscle coordination patterns. Nevertheless, the nervous system seems to effortlessly select muscle coordination patterns when sequentially producing fingertip forces of low, moderate, and maximal magnitude. The hypothesis of this study is that the selection of coordination patterns to produce submaximal forces is simplified by the appropriate modulation of the magnitude of a muscle coordination pattern capable of producing the largest expected fingertip force. In each of three directions, eight subjects were asked to sequentially produce fingertip forces of low, moderate, and maximal magnitude with their dominant forefinger. Muscle activity was described by fine-wire electromyograms (EMGs) simultaneously collected from all muscles of the forefinger. A muscle coordination pattern was defined as the vector list of the EMG activity of each muscle. For all force directions, statistically significant muscle coordination patterns similar to those previously reported for 100% of maximal fingertip forces were found for 50% of maximal voluntary force. Furthermore the coordination pattern and fingertip force vector magnitudes were highly correlated ( r > 0.88). Average coordination pattern vectors at 50 and 100% of maximal force were highly correlated with each other, as well as with individual coordination pattern vectors in the ramp transitions preceding them. In contrast to this consistency of EMG coordination patterns, predictions using a musculoskeletal computer model of the forefinger show that force magnitudes ≤50% of maximal fingertip force can be produced by coordination patterns drastically different from those needed for maximal force. Thus when modulating fingertip force magnitude across the voluntary range, the number of contributing muscles and the relative activity among them was not changed. Rather, the production of low and moderate forces seems to be simplified by appropriately scaling the magnitude of a coordination pattern capable of producing the highest force expected.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3