Sound-Induced Synchronization of Neural Activity Between and Within Three Auditory Cortical Areas

Author:

Eggermont Jos J.1

Affiliation:

1. Department of Physiology and Biophysics and Department of Psychology, Neuroscience Research Group, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Abstract

Neural synchrony within and between auditory cortical fields is evaluated with respect to its potential role in feature binding and in the coding of tone and noise sound pressure level. Simultaneous recordings were made in 24 cats with either two electrodes in primary auditory cortex (AI) and one in anterior auditory field (AAF) or one electrode each in AI, AAF, and secondary auditory cortex. Cross-correlograms (CCHs) for 1-ms binwidth were calculated for tone pips, noise bursts, and silence (i.e., poststimulus) as a function of intensity level. Across stimuli and intensity levels the total percentage of significant stimulus onset CCHs was 62% and that of significant poststimulus CCHs was 58% of 1,868 pairs calculated for each condition. The cross-correlation coefficient to stimulus onsets was higher for single-electrode pairs than for dual-electrode pairs and higher for noise bursts compared with tone pips. The onset correlation for single-electrode pairs was only marginally larger than the poststimulus correlation. For pairs from electrodes across area boundaries, the onset correlations were a factor 3–4 higher than the poststimulus correlations. The within-AI dual-electrode peak correlation was higher than that across areas, especially for spontaneous conditions. Correlation strengths for between area pairs were independent of the difference in characteristic frequency (CF), thereby providing a mechanism of feature binding for broadband sounds. For noise-burst stimulation, the onset correlation for between area pairs was independent of stimulus intensity regardless the difference in CF. In contrast, for tone-pip stimulation a significant dependence on intensity level of the peak correlation strength was found for pairs involving AI and/or AAF with CF difference less than one octave. Across all areas, driven rate, between-area peak correlation strength, or a combination of the two did not predict stimulus intensity. However, between-area peak correlation strength performs better than firing rate to decide if a stimulus is present or absent.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Basic Properties of Coordinated Neuronal Ensembles in the Auditory Thalamus;The Journal of Neuroscience;2024-04-01

2. Auditory Thalamocortical Transformations;Encyclopedia of Computational Neuroscience;2022

3. Bottom-up tinnitus models;Tinnitus and Hyperacusis;2022

4. Correlation Analysis of Parallel Spike Trains;Encyclopedia of Computational Neuroscience;2022

5. Cortical Neurophysiologic Correlates of Auditory Threshold in Adults and Children With Normal Hearing and Auditory Neuropathy Spectrum Disorder;American Journal of Audiology;2021-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3