Synaptic Efficacy and the Transmission of Complex Firing Patterns Between Neurons

Author:

Faure Philippe1,Kaplan Daniel1,Korn Henri1

Affiliation:

1. Biologie Cellulaire et Moléculaire du Neurone (Institut National de la Santé et de la Recherche Médicale U261), Institut Pasteur, 75724 Paris Cedex 15, France

Abstract

In central neurons, the summation of inputs from presynaptic cells combined with the unreliability of synaptic transmission produces incessant variations of the membrane potential termed synaptic noise (SN). These fluctuations, which depend on both the unpredictable timing of afferent activities and quantal variations of postsynaptic potentials, have defied conventional analysis. We show here that, when applied to SN recorded from the Mauthner (M) cell of teleosts, a simple method of nonlinear analysis reveals previously undetected features of this signal including hidden periodic components. The phase relationship between these components is compatible with the notion that the temporal organization of events comprising this noise is deterministic rather than random and that it is generated by presynaptic interneurons behaving as coupled periodic oscillators. Furthermore a model of the presynaptic network shows how SN is shaped both by activities in incoming inputs and by the distribution of their synaptic weights expressed as mean quantal contents of the activated synapses. In confirmation we found experimentally that long-term tetanic potentiation (LTP), which selectively increases some of these synaptic weights, permits oscillating temporal patterns to be transmitted more effectively to the postsynaptic cell. Thus the probabilistic nature of transmitter release, which governs the strength of synapses, may be critical for the transfer of complex timing information within neuronal assemblies.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3