Multistability in Recurrent Neural Loops Arising From Delay

Author:

Foss Jennifer1,Milton John12

Affiliation:

1. Committee on Neurobiology and

2. Department of Neurology, The University of Chicago, Chicago, Illinois 60637

Abstract

The dynamics of a recurrent inhibitory neural loop composed of a periodically spiking Aplysia motoneuron reciprocally connected to a computer are investigated as a function of the time delay, τ, for propagation around the loop. It is shown that for certain choices of τ, multiple qualitatively different neural spike trains co-exist. A mathematical model is constructed for the dynamics of this pulsed-coupled recurrent loop in which all parameters are readily measured experimentally: the phase resetting curve of the neuron for a given simulated postsynaptic current and τ. For choices of the parameters for which multiple spiking patterns co-exist in the experimental paradigm, the model exhibits multistability. Numerical simulations suggest that qualitatively similar results will occur if the motoneuron is replaced by several other types of neurons and that once τ becomes sufficiently long, multistability will be the dominant form of dynamical behavior. These observations suggest that great care must be taken in determining the etiology of qualitative changes in neural spiking patterns, particularly when propagation times around polysynaptic loops are long.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3