Nitric Oxide and Carbon Monoxide Modulate Oscillations of Olfactory Interneurons in a Terrestrial Mollusk

Author:

Gelperin A.1,Flores J.1,Raccuia-Behling F.1,Cooke I.R.C.2

Affiliation:

1. Biological Computation Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974; and

2. The Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria 3078, Australia

Abstract

Spontaneous or odor-induced oscillations in local field potential are a general feature of olfactory processing centers in a large number of vertebrate and invertebrate species. The ubiquity of such oscillations in the olfactory bulb of vertebrates and analogous structures in arthropods and mollusks suggests that oscillations are fundamental to the computations performed during processing of odor stimuli. Diffusible intercellular messengers such as nitric oxide (NO) and carbon monoxide (CO) also are associated with central olfactory structures in a wide array of species. We use the procerebral (PC) lobe of the terrestrial mollusk Limax maximus to demonstrate a role for NO and CO in the oscillatory dynamics of the PC lobe: synthesizing enzymes for NO and CO are associated with the PC lobes of Limax, application of NO to the Limax PC lobe increases the local field potential oscillation frequency, whereas block of NO synthesis slows or stops the oscillation, the bursting cells of the PC lobe that drive the field potential oscillation are driven to higher burst frequency by application of NO, the nonbursting cells of the PC lobe receive trains of inhibitory postsynaptic potentials, presumably from bursting cells, due to application of NO, and application of CO to the PC lobe by photolysis of caged CO results in an increase in oscillation frequency proportional to CO dosage.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3