A Model for Pleiotropic Muscarinic Potentiation of Fast Synaptic Transmission

Author:

Schobesberger Hermann1,Wheeler Diek W.1,Horn John P.1

Affiliation:

1. Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261

Abstract

The predominant form of muscarinic excitation in the forebrain and in sympathetic ganglia arises from m1 receptors coupled to the Gq/11 signal transduction pathway. Functional components of this system have been most completely mapped in frog sympathetic B neurons. Presynaptic stimulation of the B neuron produces a dual-component muscarinic excitatory postsynaptic potential (EPSP) mediated by suppression of voltage-dependent M-type K+ channels and activation of a voltage-insensitive cation current. Evidence from mammalian systems suggests that the cation current is mediated by cyclic GMP-gated channels. This paper describes the use of a computational model to analyze the consequences of pleiotropic muscarinic signaling for synaptic integration. The results show that the resting potential of B neurons is a logarithmic function of the leak conductance over a broad range of experimentally observable conditions. Small increases (<4 nS) in the muscarinically regulated cation conductance produce potent excitatory effects. Damage introduced by intracellular recording can mask the excitatory effect of the muscarinic leak current. Synaptic activation of the leak conductance combines synergistically with suppression of the M-conductance (40 → 20 nS) to strengthen fast nicotinic transmission. Overall, this effect can more than double synaptic strength, as measured by the ability of a fast nicotinic EPSP to trigger an action potential. Pleiotropic muscarinic excitation can also double the temporal window of summation between subthreshold nicotinic EPSPs and thereby promote firing. Activation of a chloride leak or suppression of a K+ leak can substitute for the cation conductance in producing excitatory muscarinic actions. The results are discussed in terms of their implications for synaptic integration in sympathetic ganglia and other circuits.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3