Acetylcholine Modulates Respiratory Pattern: Effects Mediated by M3-Like Receptors in PreBötzinger Complex Inspiratory Neurons

Author:

Shao X. M.1,Feldman J. L.1

Affiliation:

1. Department of Neurobiology, University of California, Los Angeles, California 90095-1763

Abstract

Perturbations of cholinergic neurotransmission in the brain stem affect respiratory motor pattern both in vivo and in vitro; the underlying cellular mechanisms are unclear. Using a medullary slice preparation from neonatal rat that spontaneously generates respiratory rhythm, we patch-clamped inspiratory neurons in the preBötzinger complex (preBötC), the hypothesized site for respiratory rhythm generation, and simultaneously recorded respiratory-related motor output from the hypoglossal nerve (XIIn). Most (88%) of the inspiratory neurons tested responded to local application of acetylcholine (ACh) or carbachol (CCh) or bath application of muscarine. Bath application of 50 μM muscarine increased the frequency, amplitude, and duration of XIIn inspiratory bursts. At the cellular level, muscarine induced a tonic inward current, increased the duration, and decreased the amplitude of the phasic inspiratory inward currents in preBötC inspiratory neurons recorded under voltage clamp at −60 mV. Muscarine also induced seizure-like activity evident during expiratory periods in XIIn activity; these effects were blocked by atropine. In the presence of tetrodotoxin (TTX), local ejection of 2 mM CCh or ACh onto preBötC inspiratory neurons induced an inward current along with an increase in membrane conductance under voltage clamp and induced a depolarization under current clamp. This response was blocked by atropine in a concentration-dependent manner. Bath application of 1 μM pirenzepine, 10 μM gallamine, or 10 μM himbacine had little effect on the CCh-induced current, whereas 10 μM 4-diphenylacetoxy- N-methylpiperidine methiodide blocked the current. The current-voltage ( I-V) relationship of the CCh-induced response was linear in the range of −110 to −20 mV and reversed at −11.4 mV. Similar responses were found in both pacemaker and nonpacemaker inspiratory neurons. The response to CCh was unaffected when patch electrodes contained a high concentration of EGTA (11 mM) or bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid (10 mM). The response to CCh was reduced greatly by substitution of 128 mM Tris-Cl for NaCl in the bath solution; the I-Vcurve shifted to the left and the reversal potential shifted to −47 mV. Lowering extracellular Clconcentration from 140 to 70 mM had no effect on the reversal potential. These results suggest that in preBötC inspiratory neurons, ACh acts on M3-like ACh receptors on the postsynaptic neurons to open a channel permeable to Na+and K+that is not Ca2+dependent. This inward cation current plays a major role in depolarizing preBötC inspiratory neurons, including pacemakers, that may account for the ACh-induced increase in the frequency of respiratory motor output observed at the systems/behavioral level.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3