Affiliation:
1. Institute for Neurobiology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands; and
2. Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
Abstract
Previous studies have shown that exposing hippocampal slices to low osmolarity (πo) or to low extracellular NaCl concentration ([NaCl]o) enhances synaptic transmission and also causes interstitial calcium ([Ca2+]o) to decrease. Reduction of [Ca2+]o suggests cellular uptake and could explain the potentiation of synaptic transmission. We measured intracellular calcium activity ([Ca2+]i) using fluorescent indicator dyes. In CA1 hippocampal pyramidal neurons in tissue slices, lowering πo by ∼70 mOsm caused “resting” [Ca2+]i as well as synaptically or directly stimulated transient increases of calcium activity (Δ[Ca2+]i) to transiently decrease and then to increase. In dissociated cells, lowering πo by ∼70 mOsm caused [Ca2+]i to almost double on average from 83 to 155 nM. The increase of [Ca2+]i was not significantly correlated with hypotonic cell swelling. Isoosmotic (mannitol- or sucrose-substituted) lowering of [NaCl]o, which did not cause cell swelling, also raised [Ca2+]i. Substituting NaCl with choline-Cl or Na-methyl-sulfate did not affect [Ca2+]i. In neurons bathed in calcium-free medium, lowering πo caused a milder increase of [Ca2+]i, which was correlated with cell swelling, but in the absence of external Ca2+, isotonic lowering of [NaCl]o triggered only a brief, transient response. We conclude that decrease of extracellular ionic strength (i.e., in both low πo and low [NaCl]o) causes a net influx of Ca2+ from the extracellular medium whereas cell swelling, or the increase in membrane tension, is a signal for the release of Ca2+ from intracellular stores.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献