Activation and Inactivation of Rostral Superior Colliculus Neurons During Smooth-Pursuit Eye Movements in Monkeys

Author:

Basso Michele A.1,Krauzlis Richard J.1,Wurtz Robert H.1

Affiliation:

1. Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892

Abstract

Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3