Representation of Temporal Features of Complex Sounds by the Discharge Patterns of Neurons in the Owl's Inferior Colliculus

Author:

Keller Clifford H.1,Takahashi Terry T.1

Affiliation:

1. Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403

Abstract

The spiking pattern evoked in cells of the owl's inferior colliculus by repeated presentation of the same broadband noise was found to be highly reproducible and synchronized with the temporal features of the noise stimulus. The pattern remained largely unchanged when the stimulus was presented from spatial loci that evoke similar average firing rates. To better understand this patterning, we computed the pre-event stimulus ensemble (PESE)—the average of the stimuli that preceded each spike. Computing the PESE by averaging the pressure waveforms produced a noisy, featureless trace, suggesting that the patterning was not synchronized to a particular waveform in the fine structure. By contrast, computing the PESE by averaging the stimulus envelope revealed an average envelope waveform, the “PESE envelope,” typically having a peak preceded by a trough. Increasing the overall stimulus level produced PESE envelopes with higher amplitudes, suggesting a decrease in the jitter of the cell's response. The effect of carrier frequency on the PESE envelope was investigated by obtaining a cell's response to broadband noise and either estimating the PESE envelope for each spectral band or by computing a spectrogram of the stimulus prior to each spike. Either method yielded the cell's PESE spectrogram, a plot of the average amplitude of each carrier-frequency component at various pre-spike times. PESE spectrograms revealed surfaces with peaks and troughs at certain frequencies and pre-spike times. These features are collectively called the spectrotemporal receptive field (STRF). The shape of the STRF showed that in many cases, the carrier frequency can affect the PESE envelope. The modulation transfer function (MTF), which describes a cell's ability to respond to time-varying amplitudes, was estimated with sinusoidally amplitude-modulated (SAM) noises. Comparison of the PESE envelope with the MTF in the time and frequency domains showed that the two were closely matched, suggesting that a cell's response to SAM stimuli is largely predictable from its response to a noise-modulated carrier. The STRF is considered to be a model of the linear component of a system's response to dynamic stimuli. Using the STRF, we estimated the degree to which we could predict a cell's response to an arbitrary broadband noise by comparing the convolution of the STRF and the envelope of the noise with the cell's post-stimulus time histogram to the same noise. The STRF explained 18–46% of the variance of a cell's response to broadband noise.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3