Affiliation:
1. Department of Biology, Washington University, St. Louis, Missouri 63130
Abstract
In a search phase of echolocation, big brown bats, Eptesicus fuscus, emit biosonar pulses at a rate of 10/s and listen to echoes. When a short acoustic stimulus was repetitively delivered at this rate, the reorganization of the frequency map of the primary auditory cortex took place at and around the neurons tuned to the frequency of the acoustic stimulus. Such reorganization became larger when the acoustic stimulus was paired with electrical stimulation of the cortical neurons tuned to the frequency of the acoustic stimulus. This reorganization was mainly due to the decrease in the best frequencies of the neurons that had best frequencies slightly higher than those of the electrically stimulated cortical neurons or the frequency of the acoustic stimulus. Neurons with best frequencies slightly lower than those of the acoustically and/or electrically stimulated neurons slightly increased their best frequencies. These changes resulted in the over-representation of repetitively delivered acoustic stimulus. Because the over-representation resulted in under-representation of other frequencies, the changes increased the contrast of the neural representation of the acoustic stimulus. Best frequency shifts for over-representation were associated with sharpening of frequency-tuning curves of 25% of the neurons studied. Because of the increases in both the contrast of neural representation and the sharpness of tuning, the over-representation of the acoustic stimulus is accompanied with an improvement of analysis of the acoustic stimulus.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献