Properties and Role of I h in the Pacing of Subthreshold Oscillations in Entorhinal Cortex Layer II Neurons

Author:

Dickson Clayton T.1,Magistretti Jacopo2,Shalinsky Mark H.1,Fransén Erik3,Hasselmo Michael E.4,Alonso Angel1

Affiliation:

1. Department of Neurology and Neurosurgery, Montreal Neurological Institute and McGill University, Montreal, Quebec H3A 2B4, Canada;

2. Department of Experimental Neurophysiology, Istituto Nazionale Neurologico C. Besta, Milan 510, 20133 Italy;

3. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm, Sweden; and

4. Department of Psychology, Boston University, Boston, Massachusetts 02215

Abstract

Various subsets of brain neurons express a hyperpolarization-activated inward current ( I h) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formation, is their ability to generate persistent, Na+-dependent rhythmic subthreshold membrane potential oscillations, which are thought to be instrumental in implementing theta rhythmicity in the entorhinal-hippocampal network. The SCs also display a robust time-dependent inward rectification in the hyperpolarizing direction that may contribute to the generation of these oscillations. We performed whole cell recordings of SCs in in vitro slices to investigate the specific biophysical and pharmacological properties of the current underlying this inward rectification and to clarify its potential role in the genesis of the subthreshold oscillations. In voltage-clamp conditions, hyperpolarizing voltage steps evoked a slow, noninactivating inward current, which also deactivated slowly on depolarization. This current was identified as I h because it was resistant to extracellular Ba2+, sensitive to Cs+, completely and selectively abolished by ZD7288, and carried by both Na+and K+ ions. I h in the SCs had an activation threshold and reversal potential at approximately −45 and −20 mV, respectively. Its half-activation voltage was −77 mV. Importantly, bath perfusion with ZD7288, but not Ba2+, gradually and completely abolished the subthreshold oscillations, thus directly implicating I h in their generation. Using experimentally derived biophysical parameters for I h and the low-threshold persistent Na+ current ( I NaP) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I NaP and I h can sustain persistent subthreshold oscillations in SCs. I NaP and I h operate in a “push-pull” fashion where the delay in the activation/deactivation of I h gives rise to the oscillatory process.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 276 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3