Time Course and Magnitude of Movement-Related Gating of Tactile Detection in Humans. II. Effects of Stimulus Intensity

Author:

Williams Stephan R.12,Chapman C. Elaine123

Affiliation:

1. Centre de Recherche en Sciences Neurologiques,

2. Département de Physiologie, and

3. École de Réadaptation, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada

Abstract

This study examined the effect of systematically varying stimulus intensity on the time course and magnitude of movement-related gating of tactile detection and scaling in 17 human subjects trained to perform a rapid abduction of the right index finger (D2) in response to a visual cue. Electrical stimulation was delivered to D2 at five different intensities. At the lowest intensity, approximately 90% of stimuli were detected at rest (1 × P90); four multiples of this intensity were also tested (1.25, 1.5, 1.75, and 2.0 × P90). At all intensities of stimulation, detection of stimuli applied to the moving digit was diminished significantly and in a time-dependent manner, with peak decreases occurring within ±12 ms of the onset of electromyographic activity in the first dorsal interosseous (25–45 ms before movement onset). Reductions in the proportion of stimuli detected were greatest at the lowest stimulus intensity and progressively smaller at higher intensities. No shift in the timing of the decreases in performance was seen with increasing intensity. Once the weakest intensity at which most stimuli were perceived during movement had been established (2 × P90), magnitude estimation experiments were performed using two stimulus intensities, 2 × P90 (5 subjects) and 3 × P90 (3 subjects). Significant movement-related decreases in estimated stimulus magnitude were observed at both intensities, the time course of which was similar to the time course of reductions in detection performance. As stimulus intensity increased, the magnitude of the movement-related decrease in scaling diminished. A model of detection performance that accurately described the effect of stimulus intensity and timing on movement-related reductions in detection was created. This model was then combined with a previous model that described the effects of stimulus localization and timing to predict detection performance at a given stimulation site, intensity, and time during movement. Movement-related gating of tactile perception represents the end result of movement-related effects on the transmission and subsequent processing of the stimulus. The combined model clearly defines many of the requirements that proposed physiological mechanisms of movement-related gating will have to fulfill.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3