Tonic and Synaptically Evoked Presynaptic Inhibition of Sensory Input to the Rat Olfactory Bulb Via GABABHeteroreceptors

Author:

Aroniadou-Anderjaska Vassiliki1,Zhou Fu-Ming1,Priest Catherine A.1,Ennis Matthew1,Shipley Michael T.1

Affiliation:

1. Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201

Abstract

Olfactory receptor neurons of the nasal epithelium send their axons, via the olfactory nerve (ON), to the glomeruli of the olfactory bulb (OB), where the axon terminals form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the OB, and with juxtaglomerular (JG) interneurons. Many JG cells are GABAergic. Here we show that, despite the absence of conventional synapses, GABA released from JG cells activates GABAB receptors on ON terminals and inhibits glutamate release both tonically and in response to ON stimulation. Field potential recordings and current-source density analysis, as well as intracellular and whole cell recording techniques were used in rat OB slices. Baclofen (2–5 μM), a GABAB agonist, completely suppressed ON-evoked synaptic responses of both mitral/tufted cells and JG cells, with no evidence for postsynaptic effects. Baclofen (0.5–1 μM) also reversed paired-pulse depression (PPD) of mitral/tufted cell responses to paired-pulse facilitation (PPF), and reduced depression of JG cell excitatory postsynaptic currents (EPSCs) during repetitive ON stimulation. These results suggest that baclofen reduced the probability of glutamate release from ON terminals. The GABAB antagonists CGP35348 or CGP55845A increased mitral/tufted cell responses evoked by single-pulse ON stimulation, suggesting that glutamate release from ON terminals is tonically suppressed via GABAB receptors. The same antagonists reduced PPD of ON-evoked mitral/tufted cell responses at interstimulus intervals 50–400 ms. This finding suggests that a single ON impulse evokes sufficient GABA release, presumably from JG cells, to activate GABAB receptors on ON terminals. Thus GABAB heteroreceptors on ON terminals are activated by ambient levels of extrasynaptic GABA, and by ON input to the OB. The time course of ON-evoked, GABABpresynaptic inhibition suggests that neurotransmission to M/T cells and JG cells will be significantly suppressed when ON impulses arrive in glomeruli at 2.5–20 Hz. GABAB receptor–mediated presynaptic inhibition of sensory input to the OB may play an important role in shaping the activation pattern of the OB glomeruli during olfactory coding.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3