Evaluations of artificial intelligence and machine learning algorithms in neurodiagnostics

Author:

Williams Kristin S.1ORCID

Affiliation:

1. Columbia University, New York, New York, United States

Abstract

This article evaluates the ethical implications of utilizing artificial intelligence (AI) algorithms in neurological diagnostic examinations. Applications of AI technology have been utilized to aid in the determination of pharmacological dosages of gadolinium for brain lesion detection, localization of seizure foci, and the characterization of large vessel occlusion in ischemic stroke patients. Multiple subtypes of AI/machine learning (ML) algorithms are analyzed, as AI-assisted neurology utilizes supervised, unsupervised, artificial neural network (ANN), and deep neural network (DNN) learning models. As ANN and DNN analyses can be applied to data with an unknown clinical diagnosis, these algorithms are evaluated according to Bayesian statistical analyses. Bayesian neural network analyses are incorporated, as these algorithms indicate that the predictive accuracy and model performance are dependent upon accurate configurations of the model’s hyperparameters and neural inputs. Thus, mathematical evaluations of AI algorithms are comprehensively explored to examine their clinical utility, as underperformance of AI/ML models may have deleterious consequences that affect patient outcomes due to misdiagnosis and false-negative test results.

Publisher

American Physiological Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3