Subliminal Gamma Flicker Draws Attention Even in the Absence of Transition-Flash Cues

Author:

Cheadle Samuel W.1,Parton Andrew2,Müller Hermann J.34,Usher Marius35

Affiliation:

1. Department of Cell and Developmental Biology, University College London;

2. Centre for Cognition and Neuroimaging, Brunel University, Uxbridge, United Kingdom;

3. Department of Psychological Sciences, Birkbeck College, London;

4. Department of Psychology, Ludwig Maximilian University, Munich, Germany; and

5. Department of Psychology, University of Tel Aviv, Tel Aviv, Israel

Abstract

We recently reported evidence indicating that selective attention is deployed to a target location in a multi-object display, when the target event (a change of one of the objects) is preceded by subliminal flicker in the gamma range. However, concerns have been raised regarding the stimuli used in this study and the possible contribution of an artifactual cue: a “transition flash” between pretarget flicker offset and target onset. Here, we report a series of experiments investigating the existence and potential contribution to selective attention of this transition-flash cue under different presentation conditions. We find that, although the transition flash is a real phenomenon (detection rates ≃ 15% > chance), it cannot, on its own, explain the original effects of gamma flicker on the response time to target detection. Even after eliminating this flash, detection was significantly faster, or more accurate, for targets preceded (vs. not preceded) by flicker. This congruency effect (≈15 ms) demonstrates that gamma flicker on its own is sufficient to engage selective attention. This interpretation is further strengthened by a reevaluation of 1) experiment 7 reported by van Diepen and colleagues and 2) the validity effect experiment reported by Bauer and colleagues. Possible reasons for the discrepant results are also discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3