Classification of pallidal oscillations with increasing parkinsonian severity

Author:

Connolly Allison T.1ORCID,Jensen Alicia L.2,Baker Kenneth B.2,Vitek Jerrold L.2,Johnson Matthew D.13

Affiliation:

1. Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota;

2. Department of Neurology, University of Minnesota, Minneapolis, Minnesota; and

3. Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota

Abstract

The firing patterns of neurons in the basal ganglia are known to become more oscillatory and synchronized from healthy to parkinsonian conditions. Similar changes have been observed with local field potentials (LFPs). In this study, we used an unbiased machine learning approach to investigate the utility of pallidal LFPs for discriminating the stages of a progressive parkinsonian model. A feature selection algorithm was used to identify subsets of LFP features that provided the most discriminatory information for severity of parkinsonian motor signs. Prediction errors <20% were achievable using 28 of the possible 206 features tested. For all subjects, a spectral feature within the beta band was chosen through the feature selection algorithm, but a combination of features, including alpha-band power and phase-amplitude coupling, was necessary to achieve minimal prediction errors. There was large variability between the discriminatory features for individual subjects, and testing of classifiers between subjects yielded prediction errors >50%. These results suggest that pallidal oscillations can be predictive biomarkers of parkinsonian severity, but the features are more complex than spectral power in individual frequency bands, such as the beta band. Additionally, the best feature set was subject specific, which highlights the pathophysiological heterogeneity of parkinsonism and the importance of subject specificity when designing closed-loop system controllers dependent on such features.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

NSF GRFP

Michael J. Fox Foundation for Parkinson's Research (MJFF)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3