Random Noise Paradoxically Improves Light-Intensity Encoding in Hermissenda Photoreceptor Network

Author:

Butson Christopher R.,Clark Gregory A.

Abstract

Neurons are notoriously noisy devices. Although the traditional view posits that noise degrades system performance, recent evidence suggests that noise may instead enhance neural information processing under certain conditions. Here we report that random channel and synaptic noise improve the ability of a biologically realistic computational model of the Hermissenda eye to encode light intensity. The model was created in GENESIS and is based on a previous model used to examine effects of changes in type B photoreceptor excitability, synaptic strength, and network architecture. The network consists of two type A and three type B multicompartmental photoreceptors. Each compartment contains a population of Hodgkin–Huxley-type ion channels and each cell is stimulated via artificial light currents. We found that the addition of random channel and synaptic noise yielded a significant improvement in the accuracy of the network's encoding of light intensity across eight light levels spanning 3.5 log units ( P < 0.001, modified Levene test). The benefits of noise remained after controlling for several consequences of randomness in the model. Additionally, improvements were not confined to perithreshold stimulus intensities. Finally, the effects of noise are not present in individual neurons, but rather are an emergent property of the synaptically connected network that is independent of stochastic resonance. These results suggest that noise plays a constructive role in neural information processing, a concept that could have important implications for understanding neural information processing or designing neural interface devices.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3