Author:
Hallock Robert M.,Martyniuk Christopher J.,Finger Thomas E.
Abstract
Glutamate is the principal neurotransmitter at the primary sensory afferent synapse in the medulla for the taste system. At this synapse, glutamate activates N-methyl-d-aspartate (NMDA) and non-NMDA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and kainate) ionotropic receptors to effect a response in the second-order neurons. The current experiment is the first to examine the role of metabotropic glutamate receptors (mGluRs) in the transmission of taste information. In an in vitro slice preparation of the primary vagal gustatory nucleus in goldfish, primary gustatory afferent fibers were stimulated electrically, whereas evoked dendritic field potentials were recorded in the sensory layers. Recordings were made before, during, and after bath application of mGluR agonists for various mGluR groups and subtypes. Whereas l-AP4, a group III agonist, reduced the field potential, group I and group II agonists had no effect. Furthermore, the selective mGluR4 agonist ACPT-III and mGluR8 agonist PPG were effective at reducing the field potential, whereas agonists selective for mGluR6 and 7 were not. MAP4, a group III mGluR antagonist, attenuated frequency-dependent depression, indicating that endogenous glutamate binds to presynaptic mGluRs under normal conditions. Furthermore, polymerase chain reaction showed that mRNA for mGluR4 and 8 is expressed in the vagal ganglia, a prerequisite if those receptors are expressed presynaptically in the vagal lobe. Collectively, these experiments indicate that mGluR4 and 8 are presynaptic at the primary gustatory afferent synapse and that their activation inhibits glutamatergic release.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献